Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(5): e17261, 2024 May.
Article in English | MEDLINE | ID: mdl-38712641

ABSTRACT

Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.


Subject(s)
Carbon Cycle , Carbon Sequestration , Carbon , Ecosystem , Carbon/metabolism , Carbon/analysis , Climate Change
2.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696360

ABSTRACT

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Subject(s)
Agriculture , Greenhouse Gases , Methane , Ponds , Methane/analysis , Greenhouse Gases/analysis , Australia , Environmental Monitoring , Climate Change
3.
Sci Total Environ ; 925: 171728, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492597

ABSTRACT

The loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem. In this context, we present the potential and pathway for utilizing low-cost biodegradable biopolymers from waste biomass as printing materials to fabricate 3D-printed biodegradable artificial structures for restoring coastal marine ecosystems. Various waste biomass sources can be used to produce inexpensive biopolymers, particularly those with the higher mechanical rigidity required for 3D-printed artificial structures intended to restore marine ecosystems. Advancements in 3D printing methods, as well as biopolymer modifications and blending to address challenges like biopolymer solubility, rheology, chemical composition, crystallinity, plasticity, and heat stability, have enabled the fabrication of robust structures. The ability of 3D-printed structures to support species colonization and protection was found to be greatly influenced by their biopolymer type, surface topography, structure design, and complexity. Considering limited studies on biodegradability and the effect of biodegradation products on marine ecosystems, we highlight the need for investigating the biodegradability of biopolymers in marine conditions as well as the ecotoxicity of the degraded products. Finally, we present the challenges, considerations, and future perspectives for designing tunable biomimetic 3D-printed artificial biodegradable structures from waste biomass biopolymers for large-scale coastal marine restoration.


Subject(s)
Ecosystem , Wetlands , Animals , Biomass , Biopolymers/chemistry , Polymers , Printing, Three-Dimensional
4.
Sci Total Environ ; 922: 171218, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423329

ABSTRACT

Freshwater wetlands have a disproportionately large influence on the global carbon cycle, with the potential to serve as long-term carbon sinks. Many of the world's freshwater wetlands have been destroyed or degraded, thereby affecting carbon-sink capacity. Ecological restoration of degraded wetlands is thus becoming an increasingly sought-after natural climate solution. Yet the time required to revert a degraded wetland from a carbon source to sink remains largely unknown. Moreover, increased methane (CH4) and nitrous oxide (N2O) emissions might complicate the climate benefit that wetland restoration may represent. We conducted a global meta-analysis to evaluate the benefits of wetland restoration in terms of net ecosystem carbon and greenhouse gas balance. Most studies (76 %) investigated the benefits of wetland restoration in peatlands (bogs, fens, and peat swamps) in the northern hemisphere, whereas the effects of restoration in non-peat wetlands (freshwater marshes, non-peat swamps, and riparian wetlands) remain largely unexplored. Despite higher CH4 emissions, most restored (77 %) and all natural peatlands were net carbon sinks, whereas most degraded peatlands (69 %) were carbon sources. Conversely, CH4 emissions from non-peat wetlands were similar across degraded, restored, and natural non-peat wetlands. When considering the radiative forcings and atmospheric lifetimes of the different greenhouse gases, the average time for restored wetlands to have a net cooling effect on the climate after restoration is 525 years for peatlands and 141 years for non-peat wetlands. The radiative benefit of wetland restoration does, therefore, not meet the timeframe set by the Paris Agreement to limit global warming by 2100. The conservation and protection of natural freshwater wetlands should be prioritised over wetland restoration as those ecosystems already play a key role in climate change mitigation.

5.
Environ Sci Technol ; 58(10): 4469-4475, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38409667

ABSTRACT

Plastics are rapidly accumulating in blue carbon ecosystems, i.e., mangrove forests, tidal marshes, and seagrass meadows. Accumulated plastic is diverted from the ocean, but the extent and nature of impacts on blue carbon ecosystem processes, including carbon sequestration, are poorly known. Here, we explore the potential positive and negative consequences of plastic accumulation in blue carbon ecosystems. We highlight the effects of plastic accumulation on organic carbon stocks and sediment biogeochemistry through microbial metabolism. The notion of beneficial plastic accumulation in blue carbon ecosystems is controversial, yet considering the alternative impacts of plastics on oceanic and aboveground environments, this may be the "lesser of evils". Using environmental life cycle impact assessment, we propose a research framework to address the potential positive and negative impacts of plastic accumulation in blue carbon ecosystems. Considering the multifaceted benefits, we prioritize expanding and managing blue carbon ecosystems, which may help with ecosystem conservation, as well as mitigating the negative effects of plastic.


Subject(s)
Carbon , Ecosystem , Wetlands , Carbon Sequestration
6.
Sci Total Environ ; 914: 169868, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185172

ABSTRACT

The Blue Carbon Ecosystems (BCEs), comprising mangroves, saltmarshes, and seagrasses, located at the land-ocean interface provide crucial ecosystem services. These ecosystems serve as a natural barrier against the transportation of plastic waste from land to the ocean, effectively intercepting and mitigating plastic pollution in the ocean. To gain insights into the current state of research, and uncover key research gaps related to plastic pollution in BCEs, this study conveyed a comprehensive overview using bibliometric, altmetric, and literature synthesis approaches. The bibliometric analysis revealed a significant increase in publications addressing plastic pollution in BCEs, particularly since 2018. Geographically, Chinese institutions have made substantial contributions to this research field compared to countries and regions with extensive BCEs and established blue carbon science programs. Furthermore, many studies have focused on mangrove ecosystems, while limited attention was given to exploring plastic pollution in saltmarsh, seagrass, and multiple ecosystems simultaneously. Through a systematic analysis, this study identified four major research themes in BCE-plastics research: a) plastic trapping by vegetated coastal ecosystems, b) microbial plastic degradation, c) ingestion of plastic by benthic organisms, and d) effects of plastic on blue carbon biogeochemistry. Upon synthesising the current knowledge in each theme, we employed a perspective lens to outline future research frameworks, specifically emphasising habitat characteristics and blue carbon biogeochemistry. Emphasising the importance of synergistic research between plastic pollution and blue carbon science, we underscore the opportunities to progress our understanding of plastic reservoirs across BCEs and their subsequent effects on blue carbon sequestration and mineralisation. Together, the outcomes of this review have overarching implications for managing plastic pollution and optimising climate mitigation outcomes through the blue carbon strategies.


Subject(s)
Carbon , Ecosystem , Carbon Sequestration , Climate , Climate Change , Wetlands
7.
J Environ Manage ; 352: 119897, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184869

ABSTRACT

Thousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.


Subject(s)
Ecosystem , Oil and Gas Fields , Humans , Consensus , Environment , Climate
8.
Glob Chang Biol ; 30(1): e17007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37916453

ABSTRACT

Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.


Subject(s)
Carbon Sequestration , Ecosystem , Lignin , Plant Leaves , Carbon , Soil , Wetlands
9.
J Environ Manage ; 350: 119644, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38000275

ABSTRACT

Switching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented. Yet, a paucity of real-world case studies describing the impacts of decommissioning on the environment make decision-making with respect to which option(s) might be optimal for meeting international and regional strategic environmental targets challenging. To address this gap, we draw together international expertise and judgment from marine environmental scientists on marine artificial structures as an alternative source of evidence that explores how different decommissioning options might ameliorate pressures that drive environmental status toward (or away) from environmental objectives. Synthesis reveals that for 37 United Nations and Oslo-Paris Commissions (OSPAR) global and regional environmental targets, experts consider repurposing or abandoning individual structures, or abandoning multiple structures across a region, as the options that would most strongly contribute toward targets. This collective view suggests complete removal may not be best for the environment or society. However, different decommissioning options act in different ways and make variable contributions toward environmental targets, such that policy makers and managers would likely need to prioritise some targets over others considering political, social, economic, and ecological contexts. Current policy may not result in optimal outcomes for the environment or society.


Subject(s)
Environmental Monitoring , Oil and Gas Fields , Renewable Energy , Fossil Fuels
10.
Sci Data ; 10(1): 797, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37952023

ABSTRACT

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

11.
J Environ Manage ; 348: 119216, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839209

ABSTRACT

Invasive Spartina alterniflora has become a global management challenge in coastal wetlands. China has decided to eradicate it completely, but the high costs and its provision of beneficial ecosystem functions (EF, in the form of blue carbon and coastal protection) have raised concerns about its removal. Here, using the Yangtze Estuary as a case study, we explore a reasonable pathway of S. alterniflora management that balanced control of invasive species and EF. We simulated the spatial patterns of two key EF - blue carbon storage and wave attenuation - and identified appropriate zones for eradicating S. alterniflora based on their trade-offs. We observed contrasting patterns along the land-sea gradient for S. alterniflora community, with a decrease in blue carbon storage and an increase in wave attenuation. Notably, pioneer S. alterniflora near the foreshore displayed a high cluster of blue carbon storage (63.61 ± 7.33 Mg C ha-1) and dissipated nearly 70% of wave energy by a width of 163 m. The trade-offs between the two EF indicated that the eradication project should be implemented along the seawall rather than the foreshore. Even in the scenario of prioritized shore defense with the largest eradication zone, S. alterniflora still stored 43.1% more carbon (10.67 Gg C) compared to complete eradication and dissipated over 70% of wave energy in extreme events. Our study innovatively integrates eradication and reservation in S. alterniflora management, providing a sustainable and flexible spatial strategy that meets the needs of stakeholders.


Subject(s)
Ecosystem , Wetlands , Poaceae/metabolism , Introduced Species , China , Carbon/analysis
12.
Ecol Evol ; 13(9): e10559, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745789

ABSTRACT

Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are increasingly recognized as natural climate solutions. Evaluating the current extent, losses, and gains of BCEs is crucial to estimating greenhouse gas emissions and supporting policymaking. Remote sensing approaches are uniquely suited to assess the factors driving BCEs dynamics and their impacts at various spatial and temporal scales. Here, we explored trends in the application of remote sensing in blue carbon science. We used bibliometric analysis to assess 2193 published papers for changes in research focus over time (1990 - June 2022). Over the past three decades, publications have steadily increased, with an annual growth rate of 16.9%. Most publications focused on mangrove ecosystems and used the optical spaceborne Landsat mission, presumably due to its long-term, open-access archives. Recent technologies such as LiDAR, UAVs, and acoustic sensors have enabled fine-scale mapping and monitoring of BCEs. Dominant research topics were related to mapping and monitoring natural and human impacts on BCEs, estimating vegetation and biophysical parameters, machine and deep learning algorithms, management (including conservation and restoration), and climate research. Based on corresponding author affiliations, 80 countries contributed to the field, with United States (27.2%), China (15.0%), Australia (7.5%), and India (6.0%) holding leading positions. Overall, our results reveal the need to increase research efforts for seagrasses, saltmarshes, and macroalgae, integrate technologies, increase the use of remote sensing to support carbon accounting methodologies and crediting schemes, and strengthen collaboration and resource sharing among countries. Rapid advances in remote sensing technology and decreased image acquisition and processing costs will likely enhance research and management efforts focused on BCEs.

13.
Sci Total Environ ; 903: 166565, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633380

ABSTRACT

Seagrass meadows are declining at a global scale, threatening their capacity as blue carbon sinks. Restoration of seagrasses (via seagrass seeds or plant transplantation) may recover their carbon sequestration capacity. Previous studies have predominantly focused on sediment organic carbon (SOC), while variations in sediment carbon compositions remain poorly understood, limiting our comprehension of the influence of seagrass restoration on sediment carbon stability. Here, we researched the differences in surface (0-3 cm) sediment carbon compositions in response to tropical seagrass transplantation among species (Thalassia hemprichii and Enhalus acoroides); specifically, differences in labile, recalcitrant and refractory SOC, as well as sediment inorganic carbon (SIC) compositions variations under transplanted T. hemprichii and E. acoroides communities. It was found that seagrass transplantation enhanced suspended particle organic matter, and epiphyte and macroalgae input to surface sediment, which recovered the surface SOC concentration and stock rapidly to natural levels (increased ∼1.6-fold) within two years following transplantation. The elevated contribution of epiphyte and macroalgae significantly increased the surface labile sediment organic matter (SOM), but not the recalcitrant and refractory SOM composition after short-term transplantation. Meanwhile, surface SIC was significantly elevated, which might be mainly ascribed to allochthonous carbonate particle trapped under transplanted area with implications for carbon sequestration. The higher canopy and longer leaf seagrass species, E. acoroides, had elevated SOC, SIC and was more labile composition, compared to T. hemprichii transplant. Overall, this research suggests that tropical seagrass transplantation can increase the surface SOC, SIC concentration by increasing the labile organic matter and allochthonous carbonate particle input, respectively, with varying significantly among seagrass species.

14.
Sci Total Environ ; 898: 165544, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37453706

ABSTRACT

Coastal saltmarshes provide globally important ecosystem services including 'blue carbon' sequestration, flood protection, pollutant remediation, habitat provision and cultural value. Large portions of marshes have been lost or fragmented as a result of land reclamation, embankment construction, and pollution. Sea level rise threatens marsh survival by blocking landward migration where coastlines have been developed. Research-informed saltmarsh conservation and restoration efforts are helping to prevent further loss, yet significant knowledge gaps remain. Using a mixed methods approach, this paper identifies ten research priorities through an online questionnaire and a residential workshop attended by an international, multi-disciplinary network of 35 saltmarsh experts spanning natural, physical and social sciences across research, policy, and practitioner sectors. Priorities have been grouped under four thematic areas of research: Saltmarsh Area Extent, Change and Restoration Potential (including past, present, global variation), Spatio-social contexts of Ecosystem Service delivery (e.g. influences of environmental context, climate change, and stakeholder groups on service provisioning), Patterns and Processes in saltmarsh functioning (global drivers of saltmarsh ecosystem structure/function) and Management and Policy Needs (how management varies contextually; challenges/opportunities for management). Although not intended to be exhaustive, the challenges, opportunities, and strategies for addressing each research priority examined here, providing a blueprint of the work that needs to be done to protect saltmarshes for future generations.


Subject(s)
Conservation of Natural Resources , Ecosystem , Wetlands , Climate Change , Sea Level Rise
15.
Sci Total Environ ; 885: 163699, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37149169

ABSTRACT

Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.


Subject(s)
Ecosystem , Seaweed , Carbon Dioxide , Climate Change , Carbon Sequestration , Carbon
16.
Sci Total Environ ; 890: 164430, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37247743

ABSTRACT

The role of macroalgae (seaweed) as a global contributor to carbon drawdown within marine sediments - termed 'blue carbon' - remains uncertain and controversial. While studies are needed to validate the potential for macroalgal­carbon sequestration in marine and coastal sediments, fundamental questions regarding the fate of dislodged macroalgal biomass need to be addressed. Evidence suggests macroalgal biomass may be advected and deposited within other vegetated coastal ecosystems and down to the deep ocean; however, contributions to near-shore sediments within coastal waters remain uncertain. In this study a combination of eDNA metabarcoding and surficial sediment sampling informed by seabed mapping from different physical environments was used to test for the presence of macroalgal carbon in near-shore coastal sediments in south-eastern Australia, and the physical factors influencing patterns of macroalgal transport and deposition. DNA products for a total of 68 macroalgal taxa, representing all major macroalgal groups (Phaeophyceae, Rhodophyta, and Chlorophyta) were successfully detected at 112 near-shore locations. These findings confirm the potential for macroalgal biomass to be exported into near-shore sediments and suggest macroalgal carbon donors could be both speciose and diverse. Modelling suggested that macroalgal transport and deposition, and total organic carbon (TOC), are influenced by complex interactions between several physical environmental factors including water depth, sediment grain size, wave orbital velocity, current speed, current direction, and the extent of the infralittoral zone around depositional areas. Extrapolation of the optimised model was used to predict spatial patterns of macroalgal deposition and TOC across the coastline and to identify potentially important carbon sinks. This study builds on recent studies providing empirical evidence for macroalgal biomass deposits in near-shore sediments, and a framework for predicting the spatial distribution of potential carbon sinks and informing future surveys aimed at determining the potential for long-term macroalgal carbon sequestration in marine sediments.


Subject(s)
Chlorophyta , Rhodophyta , Seaweed , Ecosystem , Carbon , Geologic Sediments
17.
Sci Total Environ ; 878: 163015, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36965737

ABSTRACT

Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly.

18.
Microorganisms ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36363713

ABSTRACT

The capacity of Blue Carbon Ecosystems to act as carbon sinks is strongly influenced by the metabolism of soil-associated microbes, which ultimately determine how much carbon is accumulated or returned to the atmosphere. The rapid evolution of sequencing technologies has facilitated the generation of tremendous amounts of data on what taxa comprise belowground microbial assemblages, largely available as isolated datasets, offering an opportunity for synthesis research that informs progress on understanding Blue Carbon microbiomes. We identified questions that can be addressed with a synthesis approach, including the high variability across datasets, space, and time due to differing sampling techniques, ecosystem or vegetation specificity, and the relationship between microbiome community and edaphic properties, particularly soil carbon. To address these questions, we collated 34 16S rRNA amplicon sequencing datasets, including bulk soil or rhizosphere from seagrass, mangroves, and saltmarshes within publicly available repositories. We identified technical and theoretical challenges that precluded a synthesis of multiple studies with currently available data, and opportunities for addressing the knowledge gaps within Blue Carbon microbial ecology going forward. Here, we provide a standardisation toolbox that supports enacting tasks for the acquisition, management, and integration of Blue Carbon-associated sequencing data and metadata to potentially elucidate novel mechanisms behind Blue Carbon dynamics.

19.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Article in English | MEDLINE | ID: mdl-35798839

ABSTRACT

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Humans
20.
Glob Chang Biol ; 28(15): 4701-4712, 2022 08.
Article in English | MEDLINE | ID: mdl-35562855

ABSTRACT

Agricultural practices have created tens of millions of small artificial water bodies ("farm dams" or "agricultural ponds") to provide water for domestic livestock worldwide. Among freshwater ecosystems, farm dams have some of the highest greenhouse gas (GHG) emissions per m2 due to fertilizer and manure run-off boosting methane production-an extremely potent GHG. However, management strategies to mitigate the substantial emissions from millions of farm dams remain unexplored. We tested the hypothesis that installing fences to exclude livestock could reduce nutrients, improve water quality, and lower aquatic GHG emissions. We established a large-scale experiment spanning 400 km across south-eastern Australia where we compared unfenced (N = 33) and fenced farm dams (N = 31) within 17 livestock farms. Fenced farm dams recorded 32% less dissolved nitrogen, 39% less dissolved phosphorus, 22% more dissolved oxygen, and produced 56% less diffusive methane emissions than unfenced dams. We found no effect of farm dam management on diffusive carbon dioxide emissions and on the organic carbon in the soil. Dissolved oxygen was the most important variable explaining changes in carbon fluxes across dams, whereby doubling dissolved oxygen from 5 to 10 mg L-1 led to a 74% decrease in methane fluxes, a 124% decrease in carbon dioxide fluxes, and a 96% decrease in CO2 -eq (CH4 + CO2 ) fluxes. Dams with very high dissolved oxygen (>10 mg L-1 ) showed a switch from positive to negative CO2 -eq. (CO2 + CH4 ) fluxes (i.e., negative radiative balance), indicating a positive contribution to reduce atmospheric warming. Our results demonstrate that simple management actions can dramatically improve water quality and decrease methane emissions while contributing to more productive and sustainable farming.


Subject(s)
Greenhouse Gases , Methane , Animals , Carbon Dioxide/analysis , Ecosystem , Farms , Greenhouse Gases/analysis , Livestock , Methane/analysis , Nitrous Oxide/analysis , Oxygen , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...